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Probability of Ray Position in Beam Waveguides

D. MARCUSE, MEMBER, IEEE

Abstract—For the case of infinitely large apertures the following
probability distributions are derived in this paper: the probability of find-
ing a ray at the nth lens at a distance r from the axis, the probability of
finding a ray with an amplitude A4 at lens n, the cuamulative probability of
finding a ray with a displacement less than r and the cumulative proba-
bility of finding a ray with an amplitude less than A.

The case of lenses with finite apertures was explored with the help of
computer simulated experiments whose results are given. These experi-
ments show that the probability distributions for the ray amplitudes which
were derived for infinite apertures are still useful even in the case of
lenses with finite apertures as long as the probability of losing the ray is
less than 20 percent.

INTRODUCTION

HIS PAPER deals with the statistics of light rays

propagating in beam waveguides. A beam waveguide,

first proposed by Goubau [1], consists of a sequence
of lenses which are capable of guiding a light beam. A beam
of electromagnetic radiation tends to spread apart by dif-
fraction. The lenses of the beam waveguide refocus the light
beam periodically thus counteracting diffraction and keep-
ing it collimated.

The description of the beam waveguide used in this paper
is based on ray optics [2], [3]. A ray optics description of
the light beam in a beam waveguide is justified as long as the
lens apertures are much larger than the transverse dimension
of the light beam. If the light beam illuminates an appreci-
able portion of each lens, our ray optics treatment is no
longer applicable. Ray optics shows that a light beam travels
through a beam waveguide following an undulating trajec-
tory. If the lenses of the waveguide are perfectly aligned the
ray trajectory is given by the equation

7, = A cos (nf + ¢).

The symbols in this equation have the following meaning:
r, is the distance of the ray from the optical axis of the lens
system measured at the nth lens, 6 is a parameter which
depends on the construction of the beam waveguide and
will be defined later. 4 and ¢ are the amplitude and phase
of the ray. The ray amplitude 4 has nothing to do with the
light intensity of the ray but is the maximum deviation from
the optical axis which the ray can assume as it follows its
oscillatory trajectory through the beam waveguide. It is ap-
parent from the equation that 7, may not always assume the
value 4 during one cycle of the ray undulation. Only if the
ray trajectory is phased such that mf+¢=mr (with m
being an integer) does |rn] = A. The values of 4 and ¢ de-
pend on the initial condition of the ray trajectory. If the
lenses of the beam waveguide are not perfectly aligned the
ray will follow a more complicated trajectory.

Manuscript received July 11, 1966; revised October 17, 1966.
The author is with Bell Telephone Laboratories, Inc., Crawford Hill
Laboratory, Holmdel, N. J.

Several papers [2]-[6] have been published describing the
dependence of the rms displacement o, = +/(r..2) of light rays
in a beam waveguide [1] as functions of the statistics of lens
displacements. (The symbol ( ) indicates an ensemble aver-
age.) The knowledge of the rms displacement of the light
beam from its trajectory in a perfectly aligned beam wave-
guide is not quite sufficient to predict the performance of
light transmission through such a device. In addition to the
rms displacement, one needs to know the probability dis-
tribution of the light rays in order to predict where a light
ray is likely to penetrate the lens, or what the chances are
to have a light ray miss the lens completely, and thus get
lost.

Several probability distributions are derived in this paper
for the case of lenses with infinitely large apertures. In case
the lens apertures can no longer be considered infinite, one
can still formulate an integral-difference equation for the
joint probability of ray position and angle. This equation is
useless, however, since it cannot be solved economically
even with the help of an electronic computer. To gain in-
formation for the case of lenses with finite apertures, I con-
ducted a series of computer simulated experiments. The re-
sult of these experiments indicates that the cumulative prob-
ability distribution for the ray amplitudes, derived for the
case of infinitely large apertures, remains useful even if the
apertures are finite. This holds as long as the total probabil-
ity, that a ray reaches the lens at which we want to observe
it, is larger than 80 percent.

The only parameter entering the probability distributions
is the rms deviation o, of the light beam at the nth lens. The
results of this paper show that the lens aperture 2a has to be
six times as large as o, to ensure that the light ray reaches the
nth lens with 99 percent probability. .

PROBABILITY DISTRIBUTION FOR THE BEAM POSITION

We consider a beam waveguide composed of ideal, thin
lenses. Fach lens with lens number » is displaced by an
amount S, from a straight line, Fig. 1. Limiting ourselves to
the two-dimensional case, we can describe the deviation r,
of the light beam from the straight line by the two simul-
tancous equations (Fig. 1).

(1a)

Thy1 = Tp -+ Lan

- Sn+1

rn+ 1
f

Equations (1a) and (1b) are the paraxial ray equations. They
hold in the limit of small angles e, as long as the approxima-
tion tan a,=a, is valid. Elimination of o, from these equa-
tions leads to [2]

Ongl = Qp — (1v)

Tonte — (2 - K)Tn+1 + Tn = KS,H_l (2)
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Fig. 1. Beam waveguide with displaced lenses .S, =lens displacement,
r,=beam displacement, o, =beam angle.
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L=lens spacing
f=focal length.

For the light ray which traverses the first two lenses on
axis ro=r1=0, (1) is solved by [2]

—1

Ty = — > S,sin(n — )0 (3)
sin 8 ,—1
with
cosf =1— ik (4)

If each lens displacement .S, is statistically independent of
the others with vanishing average value, (S,)=0, and if n is
very large, then, according to the central limit theorem [4]
the probability distribution to find the light beam at 7, in the
interval dr is

Pu(Pa)dr = ——— ¢=r" 1200’y (5)
T Op
with
n—1
U'n2 = Z Uv2- (6)
r=1

The standard deviation ¢, of each term in (3) is given by

@)

o, =196 sin (n — »)0

sin 6

with § being the standard deviation of the random vari-
ables S, which was assumed independent of the index ».
Substituting (7) into (6) and carrying out the summation one
obtains

K 1 /‘/ 1
0 ——— n— =
sin 6 /2 2 2 sin 6

Equation (8) is exactly the same as (16) in Hirano and
Fukatsu [2], if we express sin 6 in terms of « with the help
of (4).

It can easily be shown that (5) is true also for small num-
bers of n, if the lens displacements S, are distributed accord-
ing to a Gaussian probability distribution. Equation (8) for
o, holds true in this case for all values of 7.

Op =
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We can argue that the probability distribution p,(r,) will
still be Gaussian, even if the displacements of neighboring
lenses are correlated, if these correlations are of finite
length. This assumption holds, for example, if the beam
waveguide contains many random bends which are uncor-
related among each other. This assumption was made previ-
ously by this author [3] and rms values A for the beam
amplitudes were calculated in that paper. If the bends are
truly random, and if many of them are present, then (3)
consists of a sum of many random variables each now being
a sum of several of the individual terms occurring in (3).
The central limit theorem thus holds, and (5) is the proper
probability distribution for the beam position. The quantity
on can be obtained from a previous paper [3] for several
interesting cases using the relation

1
on = — A.

V2

The factor /2 has to be introduced since A was the rms
value of the beam amplitude while ¢, is the rms value of
the actual beam position.

9)

PROBABILITY DISTRIBUTION FOR THE BEAM AMPLITUDES

It has been mentioned already in the introduction that
the light ray in a beam waveguide follows an oscillatory
trajectory. If the lenses are perfectly aligned (all S,=0), (2)
has the solution

r, = A cos (nf + ¢). (10)

A is the ray amplitude and ¢ its phase. If the lenses are
slightly displaced the trajectory is still given by (10) except
that the ray amplitude 4 is no longer constant, but slowly
varying compared to cos nf. Writing (3) in the form

n—1
t {< > 8, cos V0) sin ng

Ty = =
sin @ y—1

- (fs sin w) cos no} (1

v=1

we see that the slowly varying amplitude is given by

n—1 2 n—1 2
.K 4/(2&0031/0) —I—<ZS,sin v0> . (12)
Sin 0 y=1 y=1

Rather than describing the statistics of light rays in terms of
the ray position 7,, we might consider a description in terms
of the ray amplitude A.

The function p,(r,) describes the probability of finding a
ray at r,. This ray may have a small amplitude so that it just
reaches up to r,, or it may have a large amplitude and may
reach r, only because it was ready to cross the axis of the
beam waveguide. If the beam waveguide is limited by lens
apertures, rays with large amplitudes will be interrupted and
unable to continue traveling in the beam waveguide. The
probability distribution p,(r,) can thus be expected to be
altered considerably by the presence of the irises.

A:
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Fig. 2. Probability distributions for beam position p.(e,x) and beam
amplitude P.(ond) as function of x=r./s» and 4 =4 /s, respec-
tively. o =rms beam deviation.

This consideration suggests that it may be advantageous
to use a probability distribution for the ray amplitudes in-
stead of one for the ray position, since one would expect to
find it altered only slightly even if irises cut off the rays with
the largest amplitudes. An approximate probability dis-
tribution P,(A4) for the ray amplitude A4 at the nth lens can
be obtained from p,(r.) with the help of an integral equation
in the following way. If a ray has the amplitude 4 the prob-
ability to find it at 7,<A4 can be computed from (10) if we
assume that the phase ¢ is equally distributed between zero
and 7 with the probability density

1
(¢) = . (13)

The conditional probability distribution Ga(r,) to find the
ray at r,, if it is known to have the amplitude 4, is given by

Tn

d —1
Galr) = — (ﬁ) a(4) n
or with the help of (10)
—_—— 7, < A
Ga(ry) = {m/ A2 — 1a? (15)

0 e > A.
The probability p.(r.) is thus obtained from the equation

Pulra) = f an(A)GA(rn)dA (16)

or

1 w0 dA
Pa(rn) = :fr,, P.(4) ﬁ . (17

n

The left-hand side of this equation is given by (5) while
P,(A) under the integral sign is not known. It can be shown
by substitution into (17) that the solution is a Rayleigh dis-
tribution,
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Fig. 3. Cumulative probability for beam position
W, and beam amplitude V.
Po(4y) = — e74'n’, (18)

On

The result just obtained is well known in noise theory. Its
derivation was given since the integral equation (17) will be
needed later on. The functions ,p.(o,.x) and ,P(s.x) are
shown in Fig. 2. The probability to find a ray with ampli-
tude 4=0 is zero while the probability p.(r.) reaches its
maximum at »,=0. Looking at Fig. 2, it is well to keep in
mind that p,(r,) is defined for — e <r<+ o while P,(4,)
is defined for 0<A4,< « only.

CUMULATIVE PROBABILITY DISTRIBUTIONS

For most applications it is more important to know the
probability of finding the ray at value less than || . This
probability is given by

Walr) = 2 f " (@) da. (19)
0

Using the usual definition of the error function, this cumula-
tive probability is given by

Tn
Wa(rs) = erf <'\/§¢7n>.

(20)

The corresponding cumulative distribution for the ray ampli-
tude A4 is

Va.(4) = fAPn(x)da: 21)

or, using (18)

Va(4) = 1 — eA'120n’, (22)
The functions W,(s,x) and V,(s.x) are shown in Fig. 3. It
is apparent that the cumulative probability for A is always
less than that for r, because only rays with amplitudes not
exceeding the value A contribute to V,, while rays of all
amplitudes contribute to W,(r.).
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BEAM WAVEGUIDE WITH FINITE APERTURES

So far, all our discussions have been concerned with beam
waveguides with infinite lens apertures. The case of finite
apertures is very much harder to analyze. We might hope
that probability distributions such as V,(d4) will still give
useful results if the apertures do not cut too deeply into the
distribution. -

It is easy to formulate an integral-difference equation for
the joint distribution Q,(7., @), where a, is the ray angle of

¢))
Q"+1(rn+1: an+1) = f Qn(rn; an) U<Sn+l)dsn+1. (23)

Here U(S,1) is the probability distribution for the lens
displacement .S, ;. The ray position r, and angle «, have
to be expressed by 7,41 and @41 according to

(24a)
(24b)

Tn = (]- - K)rn+1 - Lan+l + KSn+1

Lan = KI'ny1 + Lan+1 - KSn+l-

Equation (24) is obtained by solving (1) for », and a,.

Equations (24) and (23) solve the problem in principle.
The initial distribution Q¢(r¢, @o) can be assumed as the
product of two § functions. However, even a computer solu-
tion of (23) is too time consuming and therefore out of the
question. Equation (23) can be solved analytically for in-
finite lens apertures, but if the lenses have finite apertures
their presence has to be taken into consideration making the
analytic solution of (23) a very complicated task.

It is much less time consuming to make a simulated ex-
periment on the computer. I simulated 1000 different,
apertured beam waveguides with the same statistics and
traced a ray through each guide with the help of (1) starting
on the axis at lens 0 and 1. By dropping the rays which hit
the lens apertures anywhere along the line and counting the
number of rays which arrive with an amplitude less than #,
the cumulative probability W,(r,) can be established. The
result of this computer experiment is shown in Fig. 4. The
solid curves in this figure were obtained by tracing a ray
through each of 1000 waveguides, each composed of 100
randomly displaced lenses.

The x-axis is the ratio of r,/s, with ¢, of (8). W, is the
ratio of the number of rays reaching the end of the wave-
guides at a distance less than r,, divided by 1000, the total
number of experiments. The curves end at the value of x
which corresponds to a/o, with 2a being the width of the
lens apertures. The experimental curve labeled a/o,= » is
in excellent agreement with the theoretical curve of Fig. 3.
It is apparent that the probability to have a ray reach the
end of the waveguide with finite lens apertures is consider-
ably reduced from the probability for infinite aperture. The
probability for apertured lenses cannot be obtained from the
cumulative probability of ray positions for lenses with
infinite apertures. For example, one might assume to reach
the end of the waveguide at a position x<1.77 with 93
percent probability judging from the curve for lenses with
infinite apertures. Instead, we find from the curve labeled
a/o,=1.77 that the probability is only 76 percent.
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Fig. 4. Cumulative probability for beam position W, for various
values of the ratio a/c., a=aperture half width, ¢,=rms beam
deviation.

The dotted curve in Fig. 4 also computed for a/¢,=1.77
is the result of 1000 experiments with waveguides composed
of 1000 lenses. The curve is a little lower than the corre-
sponding curve obtained from waveguides 100 lenses long.
The difference is not very great, however, so that the nor-
malized representation using x=#,/0,, which transfers the
dependence on the number # of lenses to the parameter ¢,,
has a certain approximate validity.

The determination of the ray amplitudes from the com-
puter experiment is complicated by the fact that the value
A is not necessarily obtained by any of the values of r,,
as was already mentioned in the Introduction. However, the
curves of Fig. 4 can be used to compute the cumulative
probability ¥, for the ray amplitudes. The integral equation
(17) relates the probability p, of the ray position to P, the
probability of the ray amplitudes. A change of integration
variables allows us to write (17) as

o =— [ “Putury 2
U N s |
Substituting (25) into (19), using (21) and changing the inte-
gration variable back again, we obtain an integral equation
for the cumulative probability of the ray amplitudes

2 dA
T

Wi = [ i) R

(25)

(26)

The cumulative probability has the property
Va(A) = Viu(a) for A > a

with “a” being the lens apertures. This property holds be-
cause there are no rays outside the apertures, so that the
cumulative probability does not increase beyond 4= a. This
property allows us to rewrite (26)

)
Tn

) 7 P
B ™ Ta " A’\/A2—7n2 P

Walra) + Val@) [—i— arctan (
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Fig. 5. Cumulative probability for beam amplitude ¥, for various
values of the ratio a/s,, a=aperture half width, ¢,=rms beam
deviation.

The total probability for a ray to reach the nth lens is
independent of the label used to describe the ray which may
be either its position 7, at the nth lens or its amplitude 4, so
that we may write

Vala) = Wa(a). (28)

Equation (27), amended by (28) can be used to obtain V,.(4)
from the curves of Fig. 4 by numerical solution of the inte-
gral equation. The result is shown in Fig. 5 where we used
again the normalized coordinate x= A4o,.

The curves of Fig. 5 confirm the expectation that the
cumulative probability ¥, is not changed significantly by
the presence of apertures as long as the apertures are not
too small. The reason for this is that the ray amplitudes tend
to increase in the beam waveguide. Decreases in the ray
amplitude are sufficiently infrequent so that the presence of
apertures does not change the amplitude probability very
much.

These results allow us to use (22) to predict the probability
that a ray launched on-axis will reach the nth lens, as long
as this probability is higher than about 80 percent.

Discussion

The probability distributions allow us to predict the per-
formance of a beam waveguide if o,, the rms beam deviation
from the waveguide axis, is known. The rms beam deviation
is given by (8) for the case of uncorrelated, randomly dis-
placed lenses. For various other more complicated cases o,
can be obtained from Marcuse [3], Steier [5], and Berreman

(6].
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The point where either the ray displacement 7, or ray
amplitude 4 equals o, is given by x=1 in Figs. 3-5. Figure
5, in particular, shows that we need lens apertures with half
width a= 3¢, if we want to ensure that the light ray reaches
the nth lens with 99 percent probability. Assuming #>>1
and uncorrelated random lens displacements we find with the
help of (8) that the ratio of rms lens displacement § to the
half width of the lens apertures “a” has to be

5 1 VT—‘E 1
a—3\/§ K \/;L

to ensure a 99 percent probability that the light ray reaches
the nth lens. For a confocal system k=2 we get

(29)

2.36 102 for n = 100
b} 0.236
— = e = {647 1073 for n = 1000
a n

(2.36 1078 for n = 10000.

The derivation of the probability of the ray amplitudes for
apertured lenses from the curve for lenses with infinite
apertures is slight (Fig. 5). For a/¢,=1.77, for example, the
curve labeled a/e¢,=1.77 gives V,=0.765 while the curve
labled a/o, =~ gives V,=0.81. Or, expressed differently,
to ensure a probability of 76.5 percent beam transmission
we would find a required aperture a/o,=1.77 while judging
from the curve labeled a/c,= «, or equivalently from (22),
we would have selected a/a,=0.166 as the necessary ratio.
The cumulative probability V.(4) of (22) derived for
lenses with, infinitely large apertures is a reasonable approxi-
mation as long as the predicted probabilities are large.
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