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Waveguides

Abstract—For the case of infinitely large apertures the foUowiug

probability distributions are derived in this paper: tbe probability of find-

ing a ray at the nth lens at a distance r from the axis, the probability of

finding a ray with an amplitude A at lens n, the cumulative probability of

finding a ray with a displacement less than r and the cumulative proba-

bility of finding a ray with an amplitude less than A.

The case of lenses with finite apertures was explored with the help of

computer simulated experiments whose results are given. These experi-

ments show that the probability distributions for the ray amplitudes which

were derived for intirdte apertures are still useful even in the case of

lenses with finite apertures as long as the probability of losing the ray is

less than 20 percent.

INTRODUCTION

T

HIS PAPER deals with the statistics of light rays

propagating in beam waveguides. A beam waveguide,

first proposed by Goubau [1], consists of a sequence

of lenses which are capable of guiding a light beam. A beam

of electromagnetic radiation tends to spread apart by dif-

fraction. The lenses of the beam waveguide refocus the light

beam periodically thus counteracting diffraction and keep-

ing it collimated.

The description of the beam waveguide used in this paper

is based on ray optics [2], [3]. A ray optics description of

the light beam in a beam waveguide is justified as long as the

lens apertures are much larger than the transverse dimension

of the light beam. If the light beam illuminates an appreci-

able portion of each lens, our ray optics treatment is no

longer applicable. Ray optics shows that a light beam travels

through a beam waveguide following an undulating trajec-

tory. If the lenses of the waveguide are perfectly aligned the

ray trajectory is given by the equation

r. = A Cos (?20+ @).

The symbols in this equation have the following meaning:

Y. is the distance of the ray from the optical axis of the lens

system measured at the nth lens, 19is a parameter which

depends on the construction of the beam waveguide and

will be defined later. A and o are the amplitude and phase

of the ray. The ray amplitude A has nothing to do with the

light intensity of the ray but is the maximum deviation from

the optical axis which the ray can assume as it follows its

oscillatory trajectory through the beam waveguide. It is ap-

parent from the equation that rn may not always assume the

value A during one cycle of the ray undulation. Only if the

ray trajectory is phased such that n0+4 = m~ (with m

being an integer) does I r. I = A. The values of A and @de-

pend on the initial condition of the ray trajectory. If the

lenses of the beam waveguide are not perfectly aligned the

ray will follow a more complicated trajectory.
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Several papers [2]-[6] have been published describing the

dependence of therms displacement u. = ~(r,?) of light rays

in a beam waveguide [1] as functions of the statistics of lens

displacements. (The symbol ( ) indicates an ensemble aver-

age.) The knowledge of the rms displacement of the light

beam from its trajectory in a perfectly aligned beam wave-

guide is not quite sufficient to predict the performance of

light transmission through such a device. In addition to the

rms displacement, one needs to know the probability dis-

tribution of the light rays in order to predict where a light

ray is likely to penetrate the lens, or what the chances are

to have a light ray miss the lens completely, and thus get

lost.

Several probability distributions are derived in this paper

for the case of lenses with infinitely large apertures. In case

the lens apertures can no longer be considered infinite, one

can still formulate an integral-difference equation for the

joint probability of ray position and angle. This equation is

useless, however, since it cannot be solved economically

even with the help of an electronic computer. To gain in-

formation for the case of lenses with finite apertures, I con-

ducted a series of computer simulated experiments. The re-

sult of these experiments indicates that the cumulative prob-

ability distribution for the ray amplitudes, derived for the

case of infinitely large apertures, remains useful even if the

apertures are finite. This holds as long as the total probabil-

ity, that a ray reaches the lens at which we want to observe

it, is larger than 80 percent.

The only parameter entering the probability distributions

is the rms deviation a. of the light beam at the nth lens. The

results of this paper show that the lens aperture 2a has to be

six times as large as an to ensure that the light ray reaches the

nth lens with 99 percent probability.

PROBABILITY DISTRIBUTION FOR THE BEAM POSITION

We consider a beam waveguide composed of ideal, thin

lenses. Each lens with lens number v is displaced by an

amount S, from a straight line, Fig. 1. Limiting ourselves to

the two-dimensional case, we can describe the deviation r.

of the light beam from the straight line by the two simul-

taneous equations (Fig. 1).

rn+l = rn + Lan (la)

T.+, – S’n+l

ffn+l = an — (lb)
f“

Equations (la) and (lb) are the paraxial ray equations. They

hold in the limit of small angles an as long as the approxima-

tion tan a.= a. is valid. Elimination of a. from these equa-

tions leads to [2]

m+, – (2 – K)?”n+, + ‘rn = K~.+1 (2)
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LENS n n+! n+2

Fig. 1. Beam waveguide with displaced lenses &= lens displacement,
r.= beam displacement, ~.= beam angle.

with

L
~=—,

f

L= lens spacing

f= focal length.

For the light ray which traverses the first two lenses on

axis YO=rl = O, (1) is solved by [2]

K n—1

rn=— ~ S, sin (n — v)O (3)
sin 0 ,=1

with

COS~=l —+K. (4)

If each lens displacement S, is statistically independent of

the others with vanishing average value, (S,) = O, and if n is

very large, then, according to the central limit theorem [4]

the probability distribution to find the light beam at rfi in the

interval dr is

pn(t-.)d?” = --L- ~–rrt=l%=dr
42...

(5)

with

The standard deviation a, of each term in (3) is given by

K
~“=~——— sin (n — V)e

sin 0
(7)

with 6 being the standard deviation of the random vari-

ables S, which was assumed independent of the index v.

Substituting (7) into (6) and carrying out the summation one

obtains

K 1

d

1 sin (2n – 1)0
un=6— n——— . (8)

sin 0”73 2 2 sin 0

Equation (8) is exactly the same as (16) in Hirano and

Fukatsu [2], if we express sin 8 in terms of K with the help

of (4).

It can easily be shown that (5) is true also for small num-

bers of n, if the lens displacements S’, are distributed accord-

ing to a Gaussian probability distribution. Equation (8) for

u~ holds true in this case for all values of n.

We can argue that the probability distribution p.(rJ will

still be Gaussian, even if the displacements of neighboring

lenses are correlated, if these correlations are of finite

length. This assumption holds, for example, if the beam

waveguide contains many random bends which are uncor-

related among each other. This assumption was made previ-

ously by this author [3] and rms values A for the beam

amplitudes }~ere calculated in that paper. If the bends are

truly random, and if many of them are present, then (3)

consists of a sum of many random variables each now being

a sum of several of the individual terms occurring in (3).

The central limit theorem thus holds, and (5) is the proper

probability distribution for the beam position. The quantity

a. can be obtained from a previous paper [3] for several

interesting cases using the relation

1

“n=72 ‘“ (9)

The factor @ has to be introduced since A was the rms

value of the beam amplitude while un is the rms value of

the actual beam position.

PROBABILITY DISTRIBUTION FOR THE BEAM AMPLITUDES

It has been mentioned already in the introduction that

the light ray in a beam waveguide follows an oscillatory

trajectory. If the lenses are perfectly aligned (all S,= O), (2)

has the solution

r. = A cos (nO + @). (lo)

A is the ray amplitude and C#Iits phase. If the lenses are

slightly displaced the trajectory is still given by (10) except

that the ray amplitude A is no longer constant, but slowly

varying compared to cos n!?. Writing (3) in the form

K

{(

n—1

‘rn=—

)

~ S, cos Ve sin nd
sin 0 v=1

-(xspsinv’)cosn‘“)
we see that the slowly varying amplitude is given by

A=&((~scosve)2+(~susinvO~.(12)

Rather than describing the statistics of light rays in terms of

the ray position r., we might consider a description in terms

of the ray amplitude A.

The function p.(r.) describes the probability of finding a

ray at r.. This ray may have a small amplitude so that it just

reaches up to rfi, or it may have a large amplitude and may

reach r. only because it was ready to cross the axis of the

beam waveguide. If the beam waveguide is limited by lens

apertures, rays with large amplitudes will be interrupted and

unable to continue traveling in the beam waveguide. The

probability distribution pJrJ can thus be expected to be

altered considerably by the presence of the irises.
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Fig. 2. Probability distributions for beam position L.(w.x) and beam
amplitude PJu.A) as function of x= rJu. and ~ = ~tu., respec-
tively. U*= rms beam deviation.

This consideration suggests that it may be advantageous

to use a probability distribution for the ray amplitudes in-

stead of one for the ray position, since one would expect to

find it altered only slightly even if irises cut off the rays with

the largest amplitudes. An approximate probability dis-

tribution P.(A) for the ray amplitude A at the nth lens can

be obtained from pn(rn) with the help of an integral equation

in the following way. If a ray has the amplitude A the prob-

ability to find it at rn S A can be computed from (10) if we

assume that the phase 4 is equally distributed between zero

and mwith the probability density

(13)

The conditional probability distribution G~(r.) to find the

ray at rn, if it is known to have the amplitude A, is given by

or with the help of (10)

(14)

I
1

rm<A
GA(m) = TV’A2 – rnz (15)

o rm > A.

The probability pn(rfi) is thus obtained from the equation

sP.(r.) = mF’n(A)G~(rJdA (16)
o

or

The left-hand side of this equation is given by (5) while

P.(A) under the integral sign is not known. It can be shown

by substitution into (17) that the solution is a Rayleigh dis-

tribution,
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Fig. 3. Cumulative probability for beam position
W. and beam amplitude V..

P.(AJ = ~ e–A2/2U”’. (18)
U??2

The result just obtained is well known in noise theory. Its

derivation was given since the integral equation (17) will be

needed later on. The functions unp~(u~x) and a@n(umx) are

shown in Fig. 2. The probability to find a ray with ampli-

tude A = O is zero while the probability pn(r~) reaches its

maximum at r.= O. Looking at Fig. 2, it is well to keep in

mind that pn(rn) is defined for – @S r< + m while P~(-4~)
is defined for 0< An< cu only.

CUMULATIVE PROBABILITY DISTRIBUTIONS

For most applications it is more important to know the

probability of finding the ray at value less than I r. 1. This

probability is given by

S?’??

Tvn(?”n) = 2 pn(x)dx. (19)
o

Using the usual definition of the error function, this cumula-

tive probability is given by

()r.Wn(r.) = erf ~zan . (20)

The corresponding cumulative distribution for the ray ampli-

tude A is

(21)

or, using (18)

V.(A) = 1 – g–Az/Zun2. (22)

The functions W~(unX) and Vn(unx) are shown in Fig. 3. It

is apparent that the cumulative probability for A is always

less than that for r. because only rays with amplitudes not

exceeding the value A contribute to V., while rays of all

amplitudes contribute to W.(r.).



170 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1967

BEAM WAVEGUIDE WITH FINITE APERTURES a -a
1.o- %-

So far, all our discussions have been concerned with beam

waveguides with infinite lens apertures. The case of finite 0.8–
apertures is very much harder to analyze. We might hope

that probability distributions such as Vn(xi) will still give

useful results if the apertures do not cut too deeply into the ~
~ 0.6 –

distribution. -.

It is easy to formulate an integral-difference equation for
3 0,4–

the joint distribution Qn(rn, a.), where an is the ray angle of

(1)

— n.loo
----- n.looo

Q.+1(~.+1, %+1) = f m Qn(~w %) U(f%+l)w+l. (23) ‘Ov
I 1 I i I I I

0.5 I.0 1.5 2.0 2.5 3.0 3.5
—w x

Here U(S.+J is the probability distribution for the lens Fig. 4. Cumulative probability for beam position IV. for various

displacement S’n+l. The ray position rfi and angle an have
values of the ratio a/un, a = apertnre half width, U.= rms beam
deviation.

to be expressed by rn+l and an+l according to

‘r. = (1 — K)Tn+l — Jh&+l + K8n+l (24a)

Lam = Krn+I + Lan+l – K8m+1. (24b)

Equation (24) is obtained by solving (1) for r. and at.

Equations (24) and (23) solve the problem in principle.

The initial distribution QO(rO, aO) can be assumed as the

product of two 6 functions. However, even a computer solu-

tion of (23) is too time consuming and therefore out of the

question. Equation (23) can be solved analytically for in-

finite lens apertures, but if the lenses have finite apertures

their presence has to be taken into consideration making the

analytic solution of (23) a very complicated task.

It is much less time consuming to make a simulated ex-

periment on the computer. I simulated 1000 different,

apertured beam waveguides with the same statistics and

traced a ray through each guide with the help of (1) starting

on the axis at lens O and 1. By dropping the rays which hit

the lens apertures anywhere along the line and counting the

number of rays which arrive with an amplitude less than r.

the cumulative probability JVn(r.) can be established. The

result of this computer experiment is shown in Fig. 4. The

solid curves in this figure were obtained by tracing a ray

through each of 1000 waveguides, each composed of 100

randomly displaced lenses.
The x-axis is the ratio of rJu. with u. of (8). W. is the

ratio of the number of rays reaching the end of the wave-

guides at a distance less than r., divided by 1000, the total

number of experiments. The curves end at the value of x

which corresponds to a/r% with 2a being the width of the

lens apertures. The experimental curve labeled a/u. = m is

in excellent agreement with the theoretical curve of Fig. 3.

It is apparent that the probability to have a ray reach the

end of the waveguide with finite lens apertures is consider-

ably reduced from the probability for infinite aperture. The

probability for apertured lenses cannot be obtained from the
cumulative probability of ray positions for lenses with

infinite apertures. For example, one might assume to reach

the end of the waveguide at a position x< 1.77 with 93

percent probability judging from the curve for lenses with

infinite apertures. Instead, we find from the curve labeled

a/u. = 1.77 that the probability is only 76 percent.

The dotted curve in Fig. 4 also computed for a/un = 1.77

is the result of 1000 experiments with waveguides composed

of 1000 lenses. The curve is a little lower than the corre-

sponding curve obtained from waveguides 100 lenses long.

The difference is not very great, however, so that the nor-

malized representation using x= rJan, which transfers the

dependence on the number n of lenses to the parameter u.,

has a certain approximate validity.

The determination of the ray amplitudes from the com-

puter experiment is complicated by the fact that the value

A is not necessarily obtained by any of the values of rn,

as was already mentioned in the Introduction. However, the

curves of Fig. 4 can be used to compute the cumulative

probability V. for the ray amplitudes. The integral equation

(17) relates the probability p. of the ray position to P. the

probability of the ray amplitudes. A change of integration

variables allows us to write (17) as

cc du
p.(r.) = ~ sPn(u?’.) —. (25)

7rl U<U’J — 1

Substituting (25) into (19), using (21) and changing the inte-

gration variable back again, we obtain an integral equation

for the cumulative probability of the ray amplitudes

co

Wn(rn) = ~ ?’. s dA
V.(A)

A<AZ – rnz “
(26)

r ~n

The cumulative probability has the property

V.(A) = V~(a) for A>a

with “a” being the lens apertures. This property holds be-

cause there are no rays outside the apertures, so that the

cumulative probability does not increase beyond A = a. This

property allows us to rewrite (26)

‘(r)+vfi(a)[:arc’an(ti~-)-’l

2“

-J
dA—— V.(A) . (27)

x Tli A4A2 – rnz
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Fig. 5. Cumulative probability for beam amplitude V. for various
values of the ratio a/an, a = aperture half width, U.= rms beam
deviation.

The total probability for a ray to reach the rrth lens is

independent of thelabel used todescribe theray which may

be either its position rn at the nth lens or its amplitude A, so

that we may write

Vn(a) = W.(a). (28)

Equation (27), amended by (28) can be used to obtain JL(zt)

from the curves of Fig. 4 by numerical solution of the inte-

gral equation. The result is shown in Fig. 5 where we used

again the normalized coordinate x= Au..

The curves of Fig. 5 confirm the expectation that the

cumulative probability V. is not changed significantly by

the presence of apertures as long as the apertures are not

too small. The reason for this is that the ray amplitudes tend

to increase in the beam waveguide. Decreases in the ray

amplitude are sufficiently infrequent so that the presence of

apertures does not change the amplitude probability very

much.

These results allow us to use (22) to predict the probability

that a ray launched on-axis will reach the nth lens, as long

as this probability is higher than about 80 percent.

DISCUSSION

The probability distributions allow us to predict the per-

formance of a beam waveguide if u., therms beam deviation

from the waveguide axis, is known. Therms beam deviation

is given by (8) for the case of uncorrelated, randomly dis-

placed lenses. For various other more complicated cases u.

can be obtained from Marcuse [3], Steier [5], and Berreman

[6].

The point where either the ray displacement rn or ray

amplitude A equals U. is given by x= 1 in Figs. 3–5. Figure

5, in particular, shows that we need lens apertures with half

width a= 3un if we want to ensure that the light ray reaches

the nth lens with 99 percent probability. Assuming n>>l

and uncorrelated random lens displacements we find with the

help of (8) that the ratio of rms lens displacement 3 to the

half width of the lens apertures “a” has to be

(29)

to ensure a 99 percent probability that the light ray reaches

the nth lens. For a confocal system K= Z we get

I
2.36 10-2 for n = 100

8 0.236
— —— — = 6.47 10-3 for n = 1000
a d;

[2.36 10-3 for n = 10000.

The derivation of the probability of the ray amplitudes for

apertured lenses from the curve for lenses with infinite

apertures is slight (Fig. 5). For a/an= 1.77, for example, the

curve labeled a/un = 1.77 gives V.= 0.765 while the curve

Iabled a/un = m gives V.= 0.81. Or, expressed differently,

to ensure a probability of 76.5 percent beam transmission

we would find a required aperture a/un = 1.77 while judging

from the curve labeled a/un= ~, or equivalently from (22),

we would have selected a/u~ = 0.166 as the necessary ratio.

The cumulative probability ?L(A) of (22) derived for

lenses wit~ infinitely large apertures is a reasonable approxi-

mation as long as the predicted probabilities are large.
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